
Efficient Signed Clique Search in Signed Networks
Rong-Hua Li†, Qiangqiang Dai#, Lu Qin‡, Guoren Wang†, Xiaokui Xiao§, Jeffrey Xu Yu∗, Shaojie Qiao¶

†Beijing Institute of Technology, China; ‡University of Technology, Sydney, Australia; §National University of Singapore, Singapore;
#Shenzhen University, China; ∗The Chinese University of Hong Kong; ¶Chengdu University of Information Technology, China

lironghuascut@gmail.com; qiang56734@163.com; Lu.Qin@uts.edu.au; wanggr@mail.neu.edu.cn;
xkxiao@ntu.edu.sg; yu@se.cuhk.edu.hk; sjqiao@cuit.edu.cn

Abstract—Mining cohesive subgraphs from a network is a
fundamental problem in network analysis. Most existing cohesive
subgraph models are mainly tailored to unsigned networks. In
this paper, we study the problem of seeking cohesive subgraphs
in a signed network, in which each edge can be positive or
negative, denoting friendship or conflict respectively. We propose
a novel model, called maximal (𝛼, 𝑘)-clique, that represents a
cohesive subgraph in signed networks. Specifically, a maximal
(𝛼, 𝑘)-clique is a clique in which every node has at most 𝑘
negative neighbors and at least ⌈𝛼𝑘⌉ positive neighbors (𝛼 ≥ 1).
We show that the problem of enumerating all maximal (𝛼, 𝑘)-
cliques in a signed network is NP-hard. To enumerate all
maximal (𝛼, 𝑘)-cliques efficiently, we first develop an elegant
signed network reduction technique to significantly prune the
signed network. Then, we present an efficient branch and bound
enumeration algorithm with several carefully-designed pruning
rules to enumerate all maximal (𝛼, 𝑘)-cliques in the reduced
signed network. The results of extensive experiments on five
large real-life datasets demonstrate the efficiency, scalability, and
effectiveness of our algorithms.

I. INTRODUCTION

Real-life networks, such as social networks and web graphs,
typically involve cohesive subgraph structures. Discovering
cohesive subgraphs in a network is a fundamental problem
in network analysis, and is useful in numerous applications
including community discovery [1], [2], protein complex
mining [3], spam detection [4], and so on.

In applications such as trust networks analysis [5], opinion
networks mining [6], online social networks analysis [6], as
well as protein-protein interaction (PPI) networks analysis
[3], the edges in these networks can be either positive
representing friendship, or negative representing antagonism.
Finding cohesive subgraphs in these signed networks can be
used to detect community structures [7], study trust dynamics
[5], or identify protein complexes [4], etc. Unfortunately, most
existing cohesive subgraph models, such as maximal clique
[8], 𝑘-core [9], and 𝑘-truss [10], ignore the signed edge
information that might be inappropriate for characterizing the
cohesive subgraphs in a signed network.

Recently, Giatsidis et. al.[5] proposed a signed core model
to capture the signed edge information in a cohesive subgraph.
The signed core is a maximal subgraph 𝐶 such that each node
in 𝐶 has at least 𝛽 positive neighbors and also has more than 𝛾
negative neighbors, where 𝛽 and 𝛾 are two integer parameters.
The main deficiencies of the signed core model are twofold.
First, a signed core could contain too many negative edges.
Second, the signed core may be not very compact when the
parameters 𝛽 and 𝛾 are small.

Intuitively, a cohesive subgraph in the signed network
should be densely-connected. It should involve many positive
edges, but not too many negative edges. For example, in
applications related to community detection [7] or community
search [1], we may wish to find a community such that most

links have positive edges and few negative edges. Based on
this intuition, we have developed a novel cohesive subgraph
model for signed networks, called maximal (𝛼, 𝑘)-clique. A
maximal (𝛼, 𝑘)-clique satisfies three properties: (i) it is a
clique in which every pair of nodes has a connection; (ii)
every node in a maximal (𝛼, 𝑘)-clique has at most 𝑘 negative
neighbors (foes) and at least ⌈𝛼𝑘⌉ (𝛼 ≥ 1) positive neighbors
(friends); and (iii) it is a maximal subgraph that meets (i) and
(ii). Clearly, the maximal (𝛼, 𝑘)-clique can limit the number
of negative edges and it is also compact in terms of the clique
property. In the experiments, we show that the maximal (𝛼, 𝑘)-
clique model is able to identify interesting cohesive subgraphs
in many signed network analysis applications. This type of
cohesive subgraph could be very useful for discovering trust
communities in a trust network, revealing interesting protein
complexes in signed PPI networks, and for detecting strongly-
cooperative research groups in collaboration networks.
Trust community mining. In a trust network, such as Epin-
ions (www.epinions.com), users can express trust or distrust
of other users. By finding the maximal (𝛼, 𝑘)-cliques, the
trust communities with the most users who have rated each
other positively could be identified. After discovering those
trust communities, a company could perform powerful viral
marketing to promote their products by influencing just a small
portion of its users because most of those users trust each
other.
Protein complex discovery. In a signed PPI network, a protein
complex can be represented as a densely-connected subgraph,
in which most protein-protein interactions exhibit a positive
relationship (e.g., a common function relationship) and few
interactions show a negative relationship (e.g., inhibition
relationships) [3]. By identifying the maximal (𝛼, 𝑘)-cliques,
the protein complexes can be discovered in the signed PPI
network, as the model clearly represents a cohesive subgraph
containing many positive edges and few negative edges.
Finding strongly cooperative research groups. To identi-
fy strongly cooperative research groups in a co-authorship
network (e.g., DBLP), the network could be modeled as
a signed network, where the positive and negative edges
represent strong and weak cooperative relationships. For ex-
ample, if two researchers co-author many/few papers, the
cooperative relationship between them can be modeled as a
positive/negative edge. By seeking the maximal (𝛼, 𝑘)-cliques,
strongly cooperative groups can be discovered as the model
consists of many strong ties and only a few weak links.
Contributions. In this paper, we formulate and provide ef-
ficient solutions for two fundamental problems of seeking
cohesive subgraphs in a signed network: (i) enumerating all
maximal (𝛼, 𝑘)-cliques, and (ii) finding the top-𝑟 maximal

245

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00031

(𝛼, 𝑘)-cliques. The main contributions of this paper are sum-
marized as follows.
New cohesive subgraph model. We propose a novel maximal
(𝛼, 𝑘)-clique model that represents a cohesive subgraph in
signed networks. We show that the classic maximal clique
is a special case of the maximal (𝛼, 𝑘)-clique. Since the
classic maximal clique enumeration problem is NP-hard, our
problems are also NP-hard.
Novel algorithms. To compute the maximal (𝛼, 𝑘)-cliques, we
have developed an elegant signed graph reduction technique
to substantially prune the signed network. We show that
our signed graph reduction algorithm takes 𝑂(𝛿𝑚) and uses
𝑂(𝑚 + 𝑛) space, where 𝛿 denotes the arboricity, 𝑚 is
the number of edges, and 𝑛 denotes the number of nodes
of the graph. Note that the arboricity 𝛿 is bounded by
𝑂(

√
𝑚) [11], and it is often much smaller than such a worst-

case bound in real-life graphs [12]. In the reduced signed
network, we propose a new branch and bound enumeration
algorithm with several carefully-designed pruning strategies to
efficiently enumerate all maximal (𝛼, 𝑘)-cliques. The proposed
enumeration algorithm can also be easily extended to find the
top-𝑟 maximal (𝛼, 𝑘)-cliques.
Extensive experimental results. We conduct comprehensive
experimental studies to evaluate the proposed algorithms using
five large real-world datasets. The results show that our
algorithm takes less than 1000 seconds to enumerate all
maximal (𝛼, 𝑘)-cliques under most parameter settings in a
signed network with more than 1.6 million nodes and 30.6
million edges. Based on the traditional conductance [13]
metric, we introduce a new and intuitive metric, called signed
conductance, to measure the quality of a cohesive subgraph.
We show that the proposed model consistently outperforms
the baselines in terms of the signed conductance metric. We
also examine several case studies to evaluate the effectiveness
of our model. The results indicate that our model is able to
identify intuitive and compact communities in signed networks
that cannot be found by the baseline models.
Organization. Section II introduces the maximal (𝛼, 𝑘)-clique
model and formulates our problem. The signed graph reduction
technique is proposed in Section III. Section IV presents the
branch and bound enumeration algorithm. The experimental
results are reported in Section V. We review the related work
in Section VI, and conclude this work in Section VII.

II. PROBLEM STATEMENT

Let 𝐺 = (𝑉,𝐸) be an undirected signed network, where 𝑉
(∣𝑉 ∣ = 𝑛) and 𝐸 (∣𝐸∣ = 𝑚) denote the set of nodes and edges
respectively. In 𝐺, each edge 𝑒 ∈ 𝐸 is associated with a label
either “+” or “−”. An edge with label “+” denotes a positive
edge, while an edge with label “−” denotes a negative edge.
Let 𝑁𝑢 ≜ {𝑣∣(𝑢, 𝑣) ∈ 𝐸} be the set of neighbor nodes of
𝑢, 𝑁+

𝑢 ≜ {𝑣∣(𝑢, 𝑣) ∈ 𝐸, and (𝑢, 𝑣) is a positive edge} be
the set of positive neighbors, and 𝑁−

𝑢 ≜ {𝑣∣(𝑢, 𝑣) ∈ 𝐸, and
(𝑢, 𝑣) is a negative edge} be the set of negative neighbors.
Let 𝑑𝑢(𝐺) = ∣𝑁𝑢∣, 𝑑+𝑢 (𝐺) = ∣𝑁+

𝑢 ∣, 𝑑−𝑢 (𝐺) = ∣𝑁−
𝑢 ∣, be the

degree, the positive degree, and the negative degree of 𝑢 in 𝐺
respectively. A subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻) is called an induced
subgraph of 𝐺 if 𝑉𝐻 ⊆ 𝑉 and 𝐸𝐻 = {(𝑢, 𝑣)∣(𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈
𝑉𝐻 , 𝑣 ∈ 𝑉𝐻}. An induced subgraph 𝐻 of 𝐺 is a clique if
every pair of nodes in 𝐻 has an edge, i.e., (𝑢, 𝑣) ∈ 𝐸 for

4V

1V

2V

3V

5V

6V

7V

8V
+ -

+

+

+

+

+

+

+
+

+

+

+

+

+

+

-

(a) Signed graph
4V

1V

2V

3V

5V

6V

7V

8V
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

(b) Positive-edge graph

Fig. 1. Running example (red edges denote negative edges)

any 𝑢 ∈ 𝐻 and 𝑣 ∈ 𝐻 . Given a signed network 𝐺 and an
integer 𝑘, a 𝑘-core, denoted by 𝐶𝑘, is an induced subgraph
of 𝐺 such that every node in 𝐶𝑘 has a degree no less than 𝑘,
i.e., 𝑑𝑢(𝐶𝑘) ≥ 𝑘 for every 𝑢 ∈ 𝐶𝑘 [9]. A maximal 𝑘-core 𝐶𝑘

is a 𝑘-core such that there is no 𝑘-core 𝐶 ′𝑘 in 𝐺 that contains
𝐶𝑘 [9].

Intuitively, an interesting cohesive subgraph in signed net-
works should be densely connected. It should consist of many
positive edges and not contain too many negative edges. Based
on this intuition, we propose a new model, called maximal
(𝛼, 𝑘)-clique, to describe the cohesive subgraphs in a signed
network.

Definition 1: ((𝛼, 𝑘)-clique) Given a signed graph 𝐺, a
positive real value 𝛼 (𝛼 ≥ 1), and an integer 𝑘, an (𝛼, 𝑘)-
clique is an induced subgraph 𝐶 that satisfies the following
constraints.
∙ Clique constraint: 𝐶 is a clique in 𝐺;
∙ Negative-edge constraint: for each 𝑢 ∈ 𝐶, 𝑑−𝑢 (𝐶) ≤ 𝑘;
∙ Positive-edge constraint: for each 𝑢 ∈ 𝐶, 𝑑+𝑢 (𝐶) ≥ 𝛼𝑘.
In Definition 1, the clique constraint ensures that the

subgraph is densely-connected. The negative-edge constraint
imposes a limit that every node cannot have too many negative
neighbors in the subgraph, and the positive-edge constraint
guarantees that every node has a sufficient number of positive
neighbors in the subgraph. Based on Definition 1, we define
the maximal (𝛼, 𝑘)-clique as follows.

Definition 2: (Maximal (𝛼, 𝑘)-clique) An induced subgraph
𝐶 is a maximal (𝛼, 𝑘)-clique if 𝐶 is a (𝛼, 𝑘)-clique and there
is no (𝛼, 𝑘)-clique 𝐶 ′ in 𝐺 containing 𝐶.

Example 1: Consider a signed network shown in Fig. 1(a).
Suppose that 𝛼 = 3 and 𝑘 = 1. We can easily derive that
{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} is a (3, 1)-clique. Moreover, it is a maximal
(3, 1)-clique, because there is no super clique that can contain
it. Similarly, if 𝛼 = 3 and 𝑘 = 0, we have two maximal
(3, 0)-cliques which are {𝑣1, 𝑣2, 𝑣4, 𝑣5} and {𝑣1, 𝑣3, 𝑣4, 𝑣5}.
Note that in this case, {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} is no longer a (3, 0)-
clique, as the node 𝑣2 violates the negative-edge constraint.

Let 𝒞 be the set of all maximal (𝛼, 𝑘)-cliques in the signed
network 𝐺. Then, the top-𝑟 (𝑟 ≤ ∣𝒞∣) maximal (𝛼, 𝑘)-cliques is
the subset of 𝒞, denoted by 𝒞𝑟 (∣𝒞𝑟∣ = 𝑟), such that ∣𝐶∣ ≥ ∣𝐶 ′∣
for any maximal (𝛼, 𝑘)-clique 𝐶 ∈ 𝒞𝑟 and 𝐶 ′ ∈ 𝒞 ∖𝒞𝑟. In this
paper, we aim to find all maximal (𝛼, 𝑘)-cliques and the top-𝑟
maximal (𝛼, 𝑘)-cliques in a signed network. Specifically, we
formulate our problem as follows.

Problem statement. Given a signed network 𝐺 and the
parameters 𝛼, 𝑘 and 𝑟, our goal is to develop efficient
algorithms to settle the following two fundamental problems:
1) enumerate all maximal (𝛼, 𝑘)-cliques in 𝐺; and 2) identify
the top-𝑟 maximal (𝛼, 𝑘)-cliques in 𝐺.

Note that the top-𝑟 maximal (𝛼, 𝑘)-cliques search problem
can be solved easily if we can enumerate all maximal (𝛼, 𝑘)-

246

cliques. Thus, in this paper, we focus mainly on the maximal
(𝛼, 𝑘)-clique enumeration problem. In Section IV, we will
show how to adapt our algorithm to efficiently solve the top-𝑟
maximal (𝛼, 𝑘)-cliques search problem.

Hardness and challenges. First, we show that the traditional
maximal clique enumeration problem [14], [15], [8], [16]
is a special case of the maximal (𝛼, 𝑘)-cliques enumeration
problem. Suppose that 𝛼 = 0 and 𝑘 = 𝑑−max, where 𝑑−max is
the largest negative degree in 𝐺. Given this parameter setting,
a maximal (𝛼, 𝑘)-clique degrades to a traditional maximal
clique. This is because both the negative-edge and positive-
edge constraints in Definition 1 always hold when 𝛼 = 0 and
𝑘 = 𝑑−max. As a result, enumerating all maximal (𝛼, 𝑘)-cliques
is equivalent to enumerating all traditional maximal cliques if
𝛼 = 0 and 𝑘 = 𝑑−max. Therefore, the classic maximal clique
enumeration problem is a special case of our problem when
the parameters 𝛼 = 0 and 𝑘 = 𝑑−max. Since the traditional
maximal clique enumeration problem is NP-hard, our problem
is also NP-hard.

Although there is a close connection between our problem
and the maximal clique problem, the existing maximal clique
enumeration algorithms cannot be immediately applied to
solve our problem. This is because the traditional clique
enumeration algorithms, such as the classic Bron-Kerbosch al-
gorithm and its variants [14], [15], [16], can only enumerate all
maximal cliques, but they cannot guarantee that all sub-cliques
contained in the maximal cliques will be explored. Since a
maximal (𝛼, 𝑘)-clique can be a sub-clique of any maximal
clique in the signed network, the traditional clique enumeration
algorithms cannot be directly used for our problem. To solve
our problem, a straightforward method is to find all the
traditional maximal cliques first, and then and then enumerate
all the maximal (𝛼, 𝑘)-cliques in 𝐶 for each traditional
maximal clique 𝐶. However, this method is intractable for
large signed graphs because the number of traditional maximal
cliques in a signed graph may be very large and many maximal
(𝛼, 𝑘)-cliques contained in 𝐶 may exist for each traditional
maximal clique 𝐶. Moreover, this straightforward method may
generate numerous redundant maximal (𝛼, 𝑘)-cliques because
the same maximal (𝛼, 𝑘)-clique could be contained in many
overlapped traditional maximal cliques. Therefore, the main
challenge of our problem is how to efficiently enumerate every
maximal (𝛼, 𝑘)-clique only once. Several powerful pruning
techniques and a novel branch and bound algorithm to tackle
this challenge are presented below.

III. SIGNED GRAPH REDUCTION

In this section, we propose several effective rules to prune
the unpromising nodes that are definitely not contained in any
maximal (𝛼, 𝑘)-clique. Let 𝐺+ = (𝑉,𝐸+) be the subgraph of
𝐺 = (𝑉,𝐸) that contains all the positive edges in 𝐺, in which
𝐸+ ≜ {(𝑢, 𝑣)∣(𝑢, 𝑣) ∈ 𝐸, and (𝑢, 𝑣) is a positive edge}. For
convenience, we refer to 𝐺+ as the positive-edge graph of 𝐺.
For example, Fig. 1(b) depicts a positive-edge graph of the
signed graph shown in Fig. 1(a).

Based on the 𝑘-core concept in [9], the maximal positive-
edge ⌈𝛼𝑘⌉-core is defined as the maximal induced subgraph of
𝐺 such that every node in this subgraph has a positive degree
no less than ⌈𝛼𝑘⌉. Clearly, by this definition, the node set of
the maximal positive-edge ⌈𝛼𝑘⌉-core in 𝐺 is the same as the

node set of the maximal ⌈𝛼𝑘⌉-core in 𝐺+. Below, we show
that all maximal (𝛼, 𝑘)-cliques are contained in the maximal
positive-edge ⌈𝛼𝑘⌉-core of 𝐺. The proofs of this paper are
omitted due to the space limit.

Lemma 1: Any maximal (𝛼, 𝑘)-clique must be contained in
a connected component of the maximal positive-edge ⌈𝛼𝑘⌉-
core of 𝐺.

To compute maximal (𝛼, 𝑘)-cliques, we are able to reduce
the signed graph based on Lemma 1. Specifically, we can first
compute the maximal ⌈𝛼𝑘⌉-core in 𝐺+, because its node set
is the same as that of the maximal positive-edge ⌈𝛼𝑘⌉-core in
𝐺. Then, we prune all the nodes in 𝐺 that are not contained
in the maximal ⌈𝛼𝑘⌉-core of 𝐺+.

Example 2: Reconsider the signed graph in Fig. 1(a). Sup-
pose that 𝛼 = 3 and 𝑘 = 1. We can easily figure out that
there is a maximal ⌈𝛼𝑘⌉-core {𝑣1, ⋅ ⋅ ⋅ , 𝑣7} in the positive-edge
graph 𝐺+ (see Fig. 1(b)). Obviously, {𝑣1, ⋅ ⋅ ⋅ , 𝑣7} is also a
maximal positive-edge ⌈𝛼𝑘⌉-core in 𝐺. Based on the maximal
positive-edge ⌈𝛼𝑘⌉-core, we can safely prune the node 𝑣8 to
compute maximal (𝛼, 𝑘)-cliques, as 𝑣8 is definitely excluded
in any maximal (𝛼, 𝑘)-clique.

Although the maximal positive-edge ⌈𝛼𝑘⌉-core excludes
many unpromising nodes, it may still be not very powerful
for pruning. For example, in Fig. 1(b), the nodes 𝑣6 and 𝑣7
are clearly not contained in any maximal (𝛼, 𝑘)-clique when
𝛼 = 3 and 𝑘 = 1, but the maximal positive-edge ⌈𝛼𝑘⌉-core
fails to prune these two nodes. Below, we propose a more
effective approach to further prune unpromising nodes.
A. The MCCore pruning rule

Here, we present a new cohesive subgraph model, called
maximal constrained ⌈𝛼𝑘⌉-core, to further prune unpromising
nodes for the maximal (𝛼, 𝑘)-clique enumeration problem. We
abbreviate the maximal constrained ⌈𝛼𝑘⌉-core as MCCore,
when it is clear from the context. The key idea of the MCCore
model is based on the following result.

Lemma 2: Let 𝐶 be a (𝛼, 𝑘)-clique. Then, for each node
𝑢 ∈ 𝐶, the subgraph induced by 𝑁+

𝑢 (𝐺) must contain a
(⌈𝛼𝑘⌉ − 1)-core.

From Lemma 2, we can obtain the following corollary.
Corollary 1: For each node 𝑢 ∈ 𝑉 , if the subgraph induced

by 𝑁+
𝑢 (𝐺) does not contain a (⌈𝛼𝑘⌉ − 1)-core, 𝑢 cannot be

involved in any (𝛼, 𝑘)-clique.
Armed with Corollary 1, we can prune the node from

𝐺 if the subgraph induced by its positive neighbors cannot
include a (⌈𝛼𝑘⌉ − 1)-core. Note that after removing all these
unpromising nodes, some of the remaining nodes in 𝐺 may
become unpromising. Thus, this pruning procedure can iterate
until no further nodes can be pruned. We will show that
the remaining nodes form a maximal constrained ⌈𝛼𝑘⌉-core
when this iterative pruning procedure terminates. The maximal
constrained ⌈𝛼𝑘⌉-core is formally defined as follows.

Definition 3: (Maximal constrained ⌈𝛼𝑘⌉-core) Given a
signed graph 𝐺, a positive real value 𝛼, and an integer 𝑘,
a maximal constrained ⌈𝛼𝑘⌉-core 𝑅 is an induced subgraph
of 𝐺 that meets the following constraints.
∙ Neighbor-core constraint: for each 𝑢 ∈ 𝑅, the subgraph

induced by 𝑁+
𝑢 (𝑅) contains a (⌈𝛼𝑘⌉ − 1)-core;

∙ Maximal constraint: there does not exist an induced
subgraph in 𝐺 that contains 𝑅 and also satisfies the
neighbor-core constraints.

247

Algorithm 1 ICore (𝐻 = (𝑉𝐻 , 𝐸𝐻), 𝐼 , 𝜏)

Input: Graph 𝐻 = (𝑉𝐻 , 𝐸𝐻), fixed nodes 𝐼 , and an integer 𝜏
Output: An boolean constant and the node set of the 𝜏 -core
1: 𝐷 ← ∅; 𝒬 ← ∅;
2: for each 𝑣 ∈ 𝑉𝐻 do
3: if 𝑑𝑣(𝐻) < 𝜏 then
4: if 𝑣 ∈ 𝐼 then return (0, ∅);
5: 𝒬.𝑝𝑢𝑠ℎ(𝑣);
6: while 𝒬 ∕= ∅ do
7: 𝑢← 𝒬.𝑝𝑜𝑝(); 𝐷 ← 𝐷 ∪ {𝑢};
8: for each 𝑣 ∈ 𝑁𝑢(𝐻) s.t. 𝑑𝑣(𝐻) ≥ 𝜏 do
9: 𝑑𝑣(𝐻)← 𝑑𝑣(𝐻)− 1;

10: if 𝑑𝑣(𝐻) < 𝜏 then
11: if 𝑣 ∈ 𝐼 then return (0, ∅);
12: 𝒬.𝑝𝑢𝑠ℎ(𝑣);
13: 𝑉𝐻 ← 𝑉𝐻∖𝐷;
14: if 𝑉𝐻 = ∅ then return (0, ∅);
15: return (1, 𝑉𝐻);

Below, we show that all maximal (𝛼, 𝑘)-cliques are con-
tained in the maximal constrained ⌈𝛼𝑘⌉-core.

Lemma 3: Any maximal (𝛼, 𝑘)-clique must be contained in
a connected component of the maximal constrained ⌈𝛼𝑘⌉-core
of 𝐺.

According to Lemma 3, we can prune all the nodes that are
not contained in the maximal constrained ⌈𝛼𝑘⌉-core. Note that
the maximal constrained ⌈𝛼𝑘⌉-core is more effective than the
maximal positive-edge ⌈𝛼𝑘⌉-core to prune unpromising nodes.
The reason is as follows. By Definition 3, we can easily obtain
that 𝑑+𝑢 (𝑅) ≥ ⌈𝛼𝑘⌉ for every node 𝑢 in a maximal constrained
⌈𝛼𝑘⌉-core 𝑅 on the basis of the neighbor-core constraint. As
a result, the maximal constrained ⌈𝛼𝑘⌉-core of 𝐺 must be
contained in the maximal positive-edge ⌈𝛼𝑘⌉-core of 𝐺. That
is to say, the maximal constrained ⌈𝛼𝑘⌉-core can prune more
unpromising nodes than the maximal positive-edge ⌈𝛼𝑘⌉-core.

Example 3: Reconsider the signed graph in Fig. 1(a). As-
sume that 𝛼 = 3 and 𝑘 = 1. We can see that the node 𝑣7
violates the neighbor-core constraint, because the subgraph
induced by its positive neighbors {𝑣2, 𝑣5, 𝑣6} cannot consist
of a 2-core. Thus, 𝑣7 cannot be contained in the maximal
constrained ⌈𝛼𝑘⌉-core. Likewise, 𝑣6 and 𝑣8 can also be
pruned. It is easy to verify that {𝑣1, ⋅ ⋅ ⋅ , 𝑣5} is a maximal
constrained ⌈𝛼𝑘⌉-core. Clearly, compared to the maximal
positive-edge ⌈𝛼𝑘⌉-core, the maximal constrained ⌈𝛼𝑘⌉-core
can prune more nodes (𝑣7 and 𝑣8) in this example.

B. The MCBasic algorithm

To compute the MCCore, we can first compute the maximal
positive-edge ⌈𝛼𝑘⌉-core denoted by 𝑆, as 𝑆 contains the
MCCore. Then, we check whether or not 𝑢 satisfies the
neighbor-core constraint for each node 𝑢 ∈ 𝑆. Specifically,
we create a subgraph 𝑆+

𝑢 induced by 𝑢’s positive neighbors
in 𝑆 (𝑁+

𝑢 (𝑆)), and calculate the (⌈𝛼𝑘⌉ − 1)-core in 𝑆+
𝑢 . If

𝑆+
𝑢 does not contain a (⌈𝛼𝑘⌉ − 1)-core, we delete 𝑢 from 𝑆.

Since the deletion of 𝑢 may result in 𝑢’s neighbors no longer
meeting the neighbor-core constraint, we need to iteratively
process 𝑢’s neighbors. The processing terminates if no node
can be deleted. The details are provided in Algorithm 2.

Algorithm 2 first invokes Algorithm 1 to compute the
maximal ⌈𝛼𝑘⌉-core in 𝐺+. Note that Algorithm 1 admits
three input parameters {𝐻, 𝐼, 𝜏}, where 𝐻 is a graph, 𝐼 is
a set of fixed nodes, and 𝜏 is an integer. Algorithm 1 aims
at computing the maximal 𝜏 -core in 𝐻 such that it must
contain all nodes in 𝐼 . If no such a 𝜏 -core exists, the algorithm

Algorithm 2 MCBasic (𝐺, 𝛼, 𝑘)
Input: 𝐺 = (𝑉,𝐸), 𝛼, and 𝑘
Output: The node set of the maximal constrained ⌈𝛼𝑘⌉-core
1: (𝑓𝑙𝑎𝑔, 𝑉𝑅)← ICore (𝐺+, ∅, ⌈𝛼𝑘⌉); /* compute the ⌈𝛼𝑘⌉-core in 𝐺+ */
2: Let 𝑅 be the subgraph induced by 𝑉𝑅;
3: Let 𝑑+𝑣 (𝑅) be the positive degree of 𝑣 in the subgraph 𝑅;
4: 𝑓𝑢 ← 1 for all 𝑢 ∈ 𝑉𝑅;
5: 𝑋 ← ∅; 𝒬 ← ∅; /* 𝒬 is a queue */
6: for each 𝑢 ∈ 𝑉𝑅 do
7: Let 𝑅+

𝑢 be the subgraph induced by 𝑁+
𝑢 (𝑅); /* ego network of 𝑢 in 𝑅 */

8: (𝑓𝑙𝑎𝑔, 𝑆𝑢)← ICore (𝑅+
𝑢 , ∅, ⌈𝛼𝑘⌉ − 1);

9: if 𝑓𝑙𝑎𝑔 = 0 then 𝒬.𝑝𝑢𝑠ℎ(𝑢); 𝑓𝑢 ← 0;
10: while 𝒬 ∕= ∅ do
11: 𝑢← 𝒬.𝑝𝑜𝑝(); 𝑋 ← 𝑋 ∪ {𝑢};
12: for each 𝑣 ∈ 𝑁+

𝑢 (𝑅) s.t. 𝑓𝑣 = 1 do
13: 𝑑+𝑣 (𝑅)← 𝑑+𝑣 (𝑅)− 1;
14: if 𝑑+𝑣 (𝑅) < ⌈𝛼𝑘⌉ then
15: 𝒬.𝑝𝑢𝑠ℎ(𝑣); 𝑓𝑣 ← 0; /* degree pruning */
16: else
17: Let �̃�+

𝑣 be the subgraph induced by 𝑁+
𝑣 (𝑅) ∖ {𝑢};

18: (𝑓𝑙𝑎𝑔, 𝑆𝑣)← ICore (�̃�+
𝑣 , ∅, ⌈𝛼𝑘⌉ − 1);

19: if 𝑓𝑙𝑎𝑔 = 0 then 𝒬.𝑝𝑢𝑠ℎ(𝑣); 𝑓𝑣 ← 0;
20: 𝑉𝑅 ← 𝑉𝑅 ∖𝑋;
21: return 𝑉𝑅;

4V

1V

2V

5V

7V

+

+

+

+

+

(a) ego network of 𝑣2
4V

1V

2V

3V

5V

6V

7V

+ -
+

+

+

+

+

+

+

(b) ego network of 𝑣5
Fig. 2. Illustration of the definition of ego network (solid lines)

returns a Boolean constant 0 and an empty set. To compute a
traditional maximal 𝜏 -core in 𝐻 , we can invoke Algorithm 1
with an empty fixed nodes set, i.e., 𝐼 = ∅.

Algorithm 2 makes use of a queue 𝒬 to maintain all nodes
that need to be deleted (line 5). The iterative node-pruning
procedure is shown in lines 10-19. Note that Algorithm 2 also
applies a degree pruning rule to optimize efficiency (lines 14-
15). Specifically, when the algorithm processes a node 𝑢,
it first computes its positive degree. If the positive degree
is smaller than ⌈𝛼𝑘⌉, the subgraph induced by its positive
neighbors cannot contain a (⌈𝛼𝑘⌉−1)-core, and thus 𝑢 can be
directly deleted without invoking Algorithm 1 to compute the
(⌈𝛼𝑘⌉ − 1)-core (lines 14-15). The following theorem shows
the correctness of Algorithm 2.

Theorem 1: Algorithm 2 correctly computes the maximal
constrained ⌈𝛼𝑘⌉-core.

Example 4: Consider the signed graph in Fig. 1(a). Let
𝛼 = 3 and 𝑘 = 1. Clearly, the maximal positive-edge ⌈𝛼𝑘⌉-
core is the subgraph induced by {𝑣1, ⋅ ⋅ ⋅ , 𝑣7}. We can see that
the nodes {𝑣1, ⋅ ⋅ ⋅ , 𝑣5} satisfy the neighbor-core constraint,
while the nodes {𝑣6, 𝑣7} violate this constraint. Thus, in
lines 6-9, the algorithm pushes {𝑣6, 𝑣7} into the queue 𝒬.
After deleting {𝑣6, 𝑣7} from 𝒬, the nodes {𝑣1, ⋅ ⋅ ⋅ , 𝑣5} still
meet the neighbor-core constraint. Thus, we have 𝒬 = ∅ after
deleting 𝑣6, and 𝑣7. Since 𝒬 = ∅, the algorithm terminates
and returns {𝑣1, ⋅ ⋅ ⋅ , 𝑣5} as the MCCore as desired.

Below, we introduce a useful concept, called ego network,
which will be applied to analyze the time complexity of
Algorithm 2.

Definition 4: (ego network) Given a signed graph 𝐺 and a
node 𝑢, the ego network of 𝑢 is a subgraph of 𝐺 induced by
𝑢’s positive neighbors, i.e., 𝑁+

𝑢 (𝐺).
Example 5: Consider the signed network in Fig. 1(a). By

248

Definition 4, the ego network of 𝑣2 is the subgraph induced
by its positive neighbors {𝑣1, 𝑣4, 𝑣5, 𝑣7} shown in Fig. 2(a).
Similarly, Fig. 2(b) depicts an ego network of 𝑣5 which is a
subgraph induced by {𝑣1, 𝑣2, 𝑣4, 𝑣4, 𝑣6, 𝑣7}.

It should be noted that an ego network may contain negative
edges (see Fig. 2(b)). Let 𝐻max be the maximum ego network
in 𝐺 among all the nodes’ ego networks. Based on 𝐻max,
we analyze the time and space complexity of MCBasic in
Theorem 2.

Theorem 2: The time and space complexity of Algorithm 2
is 𝑂(𝑚∣𝐻max∣) and 𝑂(𝑚+ 𝑛) respectively.

Note that in real-world signed graphs, the running time of
Algorithm 2 could be much less than the worst-case time
complexity shown in Theorem 2. This is because the size of
most ego networks is much smaller than ∣𝐻max∣, due to the
power-law degree distribution of real-world graphs. Moreover,
Algorithm 2 makes use of the degree pruning rule (line 15)
to further reduce the time costs. In our experiments, we will
show that Algorithm 2 is very efficient in practice.
C. The MCNew algorithm

To further improve the efficiency of MCBasic, we propose
a novel algorithm, called MCNew, based on a dramatically
different idea. The striking feature of MCNew is that its worst-
case time complexity is 𝑂(𝜎𝑚), where 𝜎 is the arboricity
of the signed graph 𝐺 [17]. The arboricity is shown to be
bounded by 𝑂(

√
𝑚) [11], and it is typically much smaller

than the worst-case bound in most real-world graphs [12].
Before devising the MCNew algorithm, we first introduce a

new concept called ego triangle as follows.
Definition 5: (ego triangle) For any node 𝑢, a triangle

(𝑢, 𝑣, 𝑤) in the signed graph 𝐺 is called an ego triangle of 𝑢
if and only if both (𝑢, 𝑣) and (𝑢,𝑤) are positive edges.

It is important to note that the ego triangle is defined for
a specified node. The same triangle (𝑢, 𝑣, 𝑤) may be an ego
triangle for 𝑢, but it may not be an ego triangle for 𝑣 and 𝑤.
For example, in Fig. 1(a), the triangle (𝑣1, 𝑣2, 𝑣3) is an ego
triangle of 𝑣1, because both (𝑣1, 𝑣2) and (𝑣1, 𝑣3) are positive
edges. This triangle, however, is not an ego triangle of 𝑣2 (or
𝑣3), as (𝑣2, 𝑣3) is a negative edge.

Based on Definition 5, we can obtain a useful result, as
shown in Lemma 4.

Lemma 4: For any positive edge (𝑢, 𝑣) in a signed graph
𝐺, the degree of 𝑣 in 𝑢’s ego network is equal to the number
of ego triangles of 𝑢 containing (𝑢, 𝑣).

Let Δ𝑣
𝑢 be the degree of 𝑣 in 𝑢’s ego network. Notice that

Δ𝑣
𝑢 is not necessarily equal to Δ𝑢

𝑣 . The following example
illustrates the definition of Δ𝑣

𝑢.
Example 6: Consider an edge (𝑣2, 𝑣5) in Fig. 1(a). We have

Δ𝑣5
𝑣2 = 3, because 𝑣5 has three neighbors in 𝑣2’s ego network

as shown in Fig. 2(a). On the other hand, we can see that there
are three ego triangles of 𝑣2 containing (𝑣2, 𝑣5), including
(𝑣2, 𝑣1, 𝑣5), (𝑣2, 𝑣4, 𝑣5), and (𝑣2, 𝑣5, 𝑣7). This result confirms
that Δ𝑣

𝑢 equals the number of ego triangles of 𝑢 including
(𝑢, 𝑣), as shown in Lemma 4. We can also determine that
Δ𝑣2
𝑣5 = 4 because 𝑣2 has four neighbors in 𝑣5’s ego network

as illustrated in Fig. 2(b). Clearly, Δ𝑣2
𝑣5 ∕= Δ𝑣5

𝑣2 in this example.
Recall that to compute the MCCore, it is crucial to determine

whether a node’s ego network involves a (⌈𝛼𝑘⌉ − 1)-core.
The key step to calculating the (⌈𝛼𝑘⌉ − 1)-core in 𝑢’s ego
network is to compute the degree of each node in 𝑢’s ego

Algorithm 3 MCNew (𝐺, 𝛼, 𝑘)
Input: 𝐺 = (𝑉,𝐸), 𝛼, and 𝑘
Output: The node set of the maximal constrained ⌈𝛼𝑘⌉-core
1: (𝑓𝑙𝑎𝑔, 𝑉𝑅)← ICore (𝐺+, ∅, ⌈𝛼𝑘⌉); /* compute the ⌊𝛼𝑘⌋-core in 𝐺+ */
2: 𝑅← the subgraph induced by 𝑉𝑅; /* 𝑅 = (𝑉𝑅, 𝐸𝑅) */
3: 𝒬 ← ∅; 𝑆+ ← ∅; 𝜏 ← ⌈𝛼𝑘⌉ − 1;
4: 𝑑+𝑢 ← ∣{𝑤∣(𝑢,𝑤) ∈ 𝐸+

𝑅}∣; /* 𝑑+𝑢 is the positive degree of 𝑢 in 𝑅 */
5: for each (𝑢, 𝑣) ∈ 𝐸+

𝑅 do
6: 𝑆+ ← 𝑆+ ∪ {(𝑢, 𝑣), (𝑣, 𝑢)};
7: for each (𝑢, 𝑣) ∈ 𝑆+ do
8: Δ𝑣

𝑢 ← ∣{𝑤∣(𝑢,𝑤) ∈ 𝐸+
𝑅 , (𝑣, 𝑤) ∈ 𝐸𝑅}∣;

9: if Δ𝑣
𝑢 < 𝜏 then 𝒬.𝑝𝑢𝑠ℎ((𝑢, 𝑣));

10: while 𝒬 ∕= ∅ do
11: (𝑢, 𝑣)← 𝒬.𝑝𝑜𝑝(); Remove (𝑢, 𝑣) from 𝑆+;
12: for each 𝑤 s.t. (𝑢,𝑤) ∈ 𝑆+ and (𝑣, 𝑤) ∈ 𝐸𝑅 do
13: Δ𝑤

𝑢 ← Δ𝑤
𝑢 − 1;

14: if Δ𝑤
𝑢 < 𝜏 and (𝑢,𝑤) /∈ 𝒬 then 𝒬.𝑝𝑢𝑠ℎ((𝑢,𝑤));

15: 𝑑+𝑢 ← 𝑑+𝑢 − 1;
16: if 𝑑+𝑢 ≤ 𝜏 then
17: for each 𝑤 s.t. (𝑢,𝑤) ∈ 𝑆+ do
18: Remove (𝑢,𝑤) from 𝑆+ and 𝒬;
19: for each 𝑤 s.t. (𝑤, 𝑢) ∈ 𝑆+ do
20: Remove (𝑤, 𝑢) from 𝑆+ and 𝒬; 𝑑+𝑤 ← 𝑑+𝑤 − 1;
21: for each 𝑥 s.t. (𝑤, 𝑥) ∈ 𝑆+ and (𝑢, 𝑥) ∈ 𝐸𝑅 do
22: Δ𝑥

𝑤 ← Δ𝑥
𝑤 − 1;

23: if Δ𝑥
𝑤 < 𝜏 and (𝑤, 𝑥) /∈ 𝒬 then 𝒬.𝑝𝑢𝑠ℎ((𝑤, 𝑥));

24: Remove 𝑢 from 𝑅;
25: return the subgraph induced by nodes in 𝐸+(𝑅);

network. In terms of Lemma 4, we are capable of computing
the degree of every node in 𝑢’s ego network by counting
the ego triangles of 𝑢. Specifically, for each positive edge
(𝑢, 𝑣), we can compute Δ𝑣

𝑢 by counting the ego triangles of 𝑢
including (𝑢, 𝑣). We are also able to calculate Δ𝑢

𝑣 by counting
the ego triangles of 𝑣 including (𝑣, 𝑢). Consequently, for each
positive edge in 𝐺, we can compute Δ𝑣

𝑢 and Δ𝑢
𝑣 following

two various directions, respectively. Thus, in our computation,
each undirected positive edge (𝑢, 𝑣) can be transformed into
two directed positive edges (𝑢, 𝑣) and (𝑣, 𝑢).

If Δ𝑣
𝑢 < ⌈𝛼𝑘⌉ − 1, we can safely remove 𝑣 from 𝑢’s ego

network. As indicated in Lemma 4, removing 𝑣 from 𝑢’s ego
network is equivalent to deleting a directed positive edge (𝑢, 𝑣)
in 𝐺. For instance, in Fig. 2(a), removing a node 𝑣1 in 𝑣2’s
ego network is equivalent to deleting a directed edge (𝑣2, 𝑣1),
because the number of ego triangles of 𝑣2 containing (𝑣2, 𝑣1)
is 0 after removing (𝑣2, 𝑣1). The deletion of (𝑢, 𝑣) may cause
the other directed positive edges need to be removed. For
example, consider the ego network of 𝑣2 in Fig. 2(a). Assume
that 𝛼 = 3 and 𝑘 = 1. After deleting (𝑣2, 𝑣1), we have also
to remove (𝑣2, 𝑣4) (and (𝑣2, 𝑣5)), because the number of ego
triangles of 𝑣2 containing (𝑣2, 𝑣4) (and (𝑣2, 𝑣5)) decreases to
1 which is smaller than ⌈𝛼𝑘⌉− 1. Moreover, delete a directed
positive edge (𝑢, 𝑣), which will decrease the positive degree
of 𝑢 by 1, denoted by 𝑑+𝑢 . If 𝑑+𝑢 is smaller than ⌈𝛼𝑘⌉, 𝑢 can
be deleted from 𝐺 because 𝑢’s ego network cannot contain
a (⌈𝛼𝑘⌉ − 1)-core. Note that the deletion of a node 𝑢 can
be implemented by removing a set of edges associated with
𝑢, thus the same edge-deletion method can be used to handle
a node deletion. This edge-deletion procedure is iteratively
performed until no edge (and also no node) can be removed.
It can be shown that each remaining node must satisfy the
neighbor-core constraint when the algorithm completes, and
thus all remaining nodes are comprised in the MCCore. The
MCNew algorithm is outlined in Algorithm 3.

Implementation details. Algorithm 3 first calls Algorithm 1
to compute the maximal ⌈𝛼𝑘⌉-core 𝑅 = (𝑉𝑅, 𝐸𝑅) in the

249

positive-edge graph, because the maximal constrained ⌈𝛼𝑘⌉-
core is contained in the maximal ⌈𝛼𝑘⌉-core (line 1). Then,
the algorithm doubles the directions for each positive edge in
𝐸𝑅, and maintains all directed positive edges in 𝑆+ (lines 5-
6). Subsequently, for each directed positive edge (𝑢, 𝑣) ∈ 𝑆+,
the algorithm computes Δ𝑣

𝑢 by counting the ego triangles
that contains (𝑢, 𝑣) (lines 7-8). If Δ𝑣

𝑢 < ⌈𝛼𝑘⌉ − 1, the
algorithm pushes the directed positive edge (𝑢, 𝑣) into a
queue 𝒬 (line 9). Then, the algorithm iteratively removes the
unqualified directed positive edges from the queue 𝒬 (line 10-
24). When deleting a directed positive edge (𝑢, 𝑣) from 𝑆+,
the algorithm needs to update Δ𝑤

𝑢 for each (𝑢,𝑤) ∈ 𝑆+ and
(𝑣, 𝑤) ∈ 𝐸𝑅 (lines 12-13). This is because the removal of
(𝑢, 𝑣) may break an ego triangle of 𝑢 containing (𝑢,𝑤), and
therefore the algorithm may need to update Δ𝑤

𝑢 in terms of
Lemma 4. If the updated Δ𝑤

𝑢 is smaller than ⌈𝛼𝑘⌉ − 1, the
algorithm pushes it into 𝒬 for iterative edge deletion (line 14).
If the positive degree of a node 𝑢 is smaller than 𝜏 after
deleting (𝑢, 𝑣), the algorithm removes 𝑢 from 𝐺, and applies
a similar edge-deletion method to handle the node deletion
case (lines 16-24). The algorithm terminates when no further
edges can be deleted. Finally, the algorithm outputs a subgraph
induced by all the remaining nodes (line 25). The following
theorem shows the correctness of Algorithm 3.

Theorem 3: Algorithm 3 correctly calculates the maximal
constrained ⌈𝛼𝑘⌉-core.

Example 7: Reconsider the signed graph in Fig. 1(a). Let
𝛼 = 3 and 𝑘 = 1. First, the algorithm obtains a maximal
⌈𝛼𝑘⌉-core which is the subgraph induced by {𝑣1, ⋅ ⋅ ⋅ , 𝑣7}.
We can easily derive that Δ𝑣2

𝑣7 = 1, Δ𝑣6
𝑣7 = 1, Δ𝑣7

𝑣6 = 1,
Δ𝑣3
𝑣6 = 1, Δ𝑣7

𝑣2 = 1, and Δ𝑣6
𝑣3 = 1. Thus, the algorithm pushes

six directed positive edges into 𝒬. After deleting (𝑣7, 𝑣2), Δ𝑣5
𝑣7

is updated by 1. Thus, (𝑣7, 𝑣5) will be pushed into 𝒬. Since
𝑑+𝑣7 < 3 after deleting (𝑣7, 𝑣2), the algorithm removes 𝑣7
(lines 15-24). As a consequence, the edges (𝑣7, 𝑣6), (𝑣7, 𝑣5),
(𝑣6, 𝑣7), and (𝑣2, 𝑣7) are removed from 𝒬 (lines 17-20). For
node 𝑣6, 𝑑+𝑣6 decreases to 2. In the next iteration, the algorithm
pops (𝑣6, 𝑣3) from 𝒬, and 𝑣6 will be deleted as 𝑑+𝑣6 < 3.
Finally, the algorithm will obtain the MCCore {𝑣1, ⋅ ⋅ ⋅ , 𝑣5}
as desired.

Complexity analysis. The time and space complexity of
Algorithm 3 is analyzed in the following theorem.

Theorem 4: The time and space complexity of Algorithm 3
is 𝑂(𝜎𝑚) and 𝑂(𝑚 + 𝑛) respectively, where 𝜎 denotes the
arboricity of the signed graph 𝐺.

Remark. It is worth remarking that the MCCore model is
fundamentally different from the 𝑘-truss model [18]. In the 𝑘-
truss model, each edge is contained in at least 𝑘− 2 triangles.
The MCCore model contains both positive and negative edges,
and each positive edge has two implicit directions as shown
in Algorithm 3. The 𝑘-truss model only has one type of edge,
and it does not consider the direction of the edges. Owing to
these differences, the MCCore computation algorithm is much
more complicated than the 𝑘-truss computation algorithm.
Algorithm 3 not only needs to delete the unqualified edges,
but it also needs to delete nodes. The traditional 𝑘-truss
computation algorithm [18] only needs to iteratively remove
unpromising edges.

IV. THE BRANCH AND BOUND ALGORITHM

Recall that the maximal (𝛼, 𝑘)-clique enumeration problem
is NP-hard. Thus, a polynomial-time algorithm does not exist
to solve our problem unless P=NP. In this section, we propose
a branch and bound algorithm, called MSCE, to compute all
(or top-𝑟) maximal (𝛼, 𝑘)-cliques in large signed networks.
The MSCE algorithm first invokes the MCNew algorithm to
prune the unpromising nodes, and then performs an efficient
branch and bound enumeration (BBE) procedure on the re-
duced signed graph to find all (or top-𝑟) maximal (𝛼, 𝑘)-
cliques. Below, we detail the branch and bound enumeration
(BBE) procedure.

The key idea of BBE. Let 𝒞 be the set of all maximal
connected component of MCCore obtained by Algorithm 3.
For each maximal connected component 𝑅 ∈ 𝒞, we carry out
the following BBE procedure. First, if 𝑅 is not a valid (𝛼, 𝑘)-
clique, BBE picks a node 𝑢 from 𝑅 to divide the search space
into two subspaces: 1) the subspace of including 𝑢, and 2)
the subspace of excluding 𝑢. Then, BBE recursively performs
the same procedure in these two subspaces. Obviously, any
maximal (𝛼, 𝑘)-clique must be contained in one of these
subspaces. The BBE algorithm makes use of a pair (𝑅, 𝐼)
to represent a search space, in which 𝑅 is the set of candidate
nodes, and 𝐼 denotes the set of included nodes. Initially, 𝑅
is set to be a maximal connected component of MCCore, and
𝐼 = ∅. In each recursion, BBE may select a node 𝑣 ∈ 𝑅 to
split the search space (𝑅, 𝐼) into two subspaces (𝑅, 𝐼 ∪ {𝑢})
and (𝑅∖{𝑢}, 𝐼). It should be noted that a search space (𝑅, 𝐼)
comprises all the maximal (𝛼, 𝑘)-cliques containing 𝐼 .

Second, if 𝑅 is an (𝛼, 𝑘)-clique, BBE can terminate the
search early, and then verifies whether 𝑅 is a maximal (𝛼, 𝑘)-
clique. Note that for each (𝛼, 𝑘)-clique 𝐶, we can apply the
following approach to show whether it is a maximal (𝛼, 𝑘)-
clique. First, we compute the common neighbors of all nodes
in 𝐶. Then, for each common neighbor 𝑣, we determine
whether 𝐶∪{𝑣} is a valid (𝛼, 𝑘)-clique or not. If this the case,
𝐶 is not a maximal (𝛼, 𝑘)-clique, as it can be expanded by a
node 𝑣. Otherwise, 𝐶 is a maximal (𝛼, 𝑘)-clique. Below, we
propose several effective pruning techniques to further improve
the efficiency of the BBE algorithm.

A. The pruning rules in BBE

The ⌈𝛼𝑘⌉-core pruning rule. In the search subspace (𝑅, 𝐼),
let 𝐺𝑅 be the subgraph induced by 𝑅, and 𝐺+

𝑅 be the positive-
edge graph of 𝐺𝑅. Then, we compute the maximal ⌈𝛼𝑘⌉-
core on 𝐺+

𝑅, denoted by 𝐶. If 𝐶 contains all nodes in 𝐼 , we
are able to reduce the candidate nodes set 𝑅. In particular,
we can set 𝑅 = 𝐶, because all nodes in 𝑅 ∖ 𝐶 can be
pruned (see Lemma 1). Otherwise, we can prune the entire
search space, because it cannot contain any maximal (𝛼, 𝑘)-
clique including all nodes in 𝐼 . Similarly, we are also capable
of using MCCore for pruning. However, in BBE, we only
adopt ⌈𝛼𝑘⌉-core pruning. This is because the algorithm needs
to perform the pruning rule in each recursion (each search
subspace). Thus, we choose ⌈𝛼𝑘⌉-core pruning, as it is much
more computationally efficient than MCCore pruning.

The clique-constraint pruning rule. Let 𝑢 be the picked
node in the search space (𝑅, 𝐼). Consider the subspace of
including 𝑢, i.e., (𝑅, 𝐼 ∪ {𝑢}). Clearly, 𝐼 ∪ {𝑢} must be

250

a clique, because all the included nodes in an (𝛼, 𝑘)-clique
form a clique. Otherwise, 𝑢 cannot be added into 𝐼 . For each
𝑣 ∈ 𝑅∖{𝐼∪{𝑢}}, if 𝑣 is not a common neighbor of the nodes
in 𝐼 ∪ {𝑢}, we can safely prune 𝑣. This is because, 𝑣 cannot
be involved in a maximal (𝛼, 𝑘)-clique that contains 𝐼 ∪ {𝑢}.
Therefore, we can prune 𝑣 in the search space (𝑅, 𝐼 ∪ {𝑢}).
Using this pruning rule, we can further reduce the candidate
nodes set 𝑅.

The negative-edge constraint pruning rule. Except for the
clique-constraint pruning, we are also able to leverage the
negative-edge constraint to further prune the subspace of
including 𝑢. Specifically, for each 𝑣 ∈ 𝑅 ∖ {𝐼 ∪{𝑢}}, if every
node in the subgraph induced by {𝐼 ∪ {𝑢, 𝑣}} violates the
negative-edge constraint, 𝑣 can be pruned. The reason is as
follows. If some of nodes in {𝐼 ∪ {𝑢, 𝑣}} do not meet the
negative-edge constraint, {𝐼 ∪ {𝑢, 𝑣}} cannot be contained in
any maximal (𝛼, 𝑘)-clique. That is to say, 𝑣 cannot be included
in any maximal (𝛼, 𝑘)-clique that already contains {𝐼 ∪{𝑢}}.
As a result, we can prune 𝑣 in the subspace (𝑅, 𝐼 ∪ {𝑢}).

B. The MSCE algorithm

The MSCE algorithm is detailed in Algorithm 4. In lines 1-
5, MSCE first invokes MCNew to compute the MCCore
(line 1). Then, for each maximal connected component, MSCE
calls BBE to enumerate all maximal (𝛼, 𝑘)-cliques (line 2-
5). Lines 6-25 outlines the BBE procedure. The ⌈𝛼𝑘⌉-core
pruning rule is implemented in lines 8-10. Specifically, the
algorithm invokes Algorithm 1 with the fixed nodes set 𝐼 to
compute whether there is a ⌈𝛼𝑘⌉-core in the positive-edge
graph 𝐺+

𝑅 containing 𝐼 (line 9). If no such a ⌈𝛼𝑘⌉-core exists,
the algorithm prunes the current search space in terms of the
⌈𝛼𝑘⌉-core pruning rule (line 10). Otherwise, if the resulting
⌈𝛼𝑘⌉-core is also a (𝛼, 𝑘)-clique, the algorithm performs a
maximal property testing to verify whether it is a maximal
(𝛼, 𝑘)-clique (lines 11-12 and lines 21-25), and terminates
early (line 13). The recursion in the subspace of including
𝑢 is implemented in lines 15-19, while line 20 describes the
recursion performed in the subspace of excluding 𝑢. Note that
both the clique-constraint and negative-edge constraint pruning
rules are implemented in lines 16-18. Since Algorithm 4
explores all search subspaces, the correctness of our algorithm
is easily guaranteed. Below, we analyze the time and space
complexity of our algorithm.

Complexity analysis. The worst-case time complexity of the
MSCE algorithm is exponential, due to the NP-hardness of our
problem. Clearly, the enumeration tree of the MSCE algorithm
is a binary tree because the algorithm partitions the search
space into two subspaces in each recursion. Let 𝑛′ and 𝑚′ be
the number of nodes and edges in the MCCore 𝐶, respectively.
There are at most 2𝑛

′
subspaces explored by MSCE. In each

search subspace (𝑅, 𝐼), MSCE takes 𝑂(∣𝐺𝑅∣) time to compute
the ⌈𝛼𝑘⌉-core (line 9 in Algorithm 4), which is dominated
by 𝑂(𝑚′). To compute the clique-constraint pruning and
the negative-edge constraint pruning, the algorithm consumes
𝑂(∣𝑅∣ + ∣𝐼∣) time, which is bounded by 𝑂(𝑛′). To check
the maximal property for an (𝛼, 𝑘)-clique, MSCE takes at
most 𝑂(

∑
𝑢∈𝑅 𝑑𝑢(𝐶)) time (lines 21-25), which is bounded

by 𝑂(𝑚′). Therefore, the total cost of MSCE spent in each
recursion is at most 𝑂(𝑚′). As a result, the time complexity

Algorithm 4 MSCE (𝐺, 𝛼, 𝑘)
Input: 𝐺 = (𝑉,𝐸), 𝛼, and 𝑘
Output: All maximal (𝛼, 𝑘)-cliques
1: ℛ ← ∅; 𝑉𝑅 ← MCNew (𝐺, 𝛼, 𝑘);
2: 𝒞 ← the set of maximal connected components of the subgraph induced by 𝑉𝑅;
3: for each 𝐶 ∈ 𝒞 do
4: BBE (𝑉𝐶 , ∅, 𝛼, 𝑘);
5: return ℛ;

6: Procedure BBE (𝑅, 𝐼 , 𝛼, 𝑘)
7: Let 𝐺𝑅 = (𝑅,𝐸𝑅) be the subgraph induced by 𝑅;
8: Let 𝐺+

𝑅 = (𝑅,𝐸+
𝑅) be the positive-edge subgraph of 𝐺𝑅;

9: (𝑓𝑙𝑎𝑔,𝑅)← ICore (𝐺+
𝑅, 𝐼 , ⌈𝛼𝑘⌉);

10: if 𝑓𝑙𝑎𝑔 = 0 then return;
11: if 𝑅 is a (𝛼, 𝑘)-clique then
12: if MaxTest (𝑅, 𝛼, 𝑘)=1 then ℛ ← ℛ∪ {𝑅};
13: return; /* early termination */
14: Pick a node 𝑢 from 𝑅 ∖ 𝐼;
15: 𝐷 ← ∅; 𝐼𝑢 ← 𝐼 ∪ {𝑢}; /* include 𝑢 */
16: for 𝑣 ∈ 𝑅 ∖ 𝐼𝑢 do
17: if (𝑣 /∈ 𝑁𝑢(𝐺𝑅)) or (∃𝑤 ∈ 𝐼𝑢 ∪ {𝑣} s.t. 𝑑−𝑤(𝐼𝑢 ∪ {𝑣}) > 𝑘) then
18: 𝐷 ← 𝐷 ∪ {𝑣};
19: BBE (𝑅 ∖𝐷, 𝐼𝑢, 𝛼, 𝑘)
20: BBE (𝑅 ∖ {𝑢}, 𝐼 , 𝛼, 𝑘); /* exclude 𝑢 */

21: Procedure MaxTest (𝑅, 𝛼, 𝑘)
22: Let 𝐶𝑁𝑅 be the set of common neighbors of all nodes in 𝑅;
23: for each 𝑣 ∈ 𝐶𝑁𝑅 do
24: if 𝑑−𝑤(𝑅 ∪ {𝑣}) ≤ 𝑘 for all 𝑤 ∈ 𝑅 ∪ {𝑣} then return 0;
25: return 1;

of MSCE is 𝑂(2𝑛
′
(𝑚′)). Since the size of the MCCore is

typically not very large and the proposed pruning rules are
very effective, MSCE is tractable for handling large-scale
signed graphs. In the experiments, we show that our algorithm
is scalable to the signed graph with more than one million
nodes and ten millions edges. For the space complexity, the
algorithm uses at most 𝑂(𝑚′) space in each recursion. Since
our algorithm works in a DFS (depth-first search) manner, the
total space overhead of MSCE is 𝑂(𝑚 + 𝑛), which is linear
with respect to the graph size.

Heuristic node selection strategy. Recall that the MSCE
algorithm needs to select a node to split the search space
in each recursion (line 14). A naive method is to randomly
select a node 𝑢 from 𝑅 ∖ 𝐼 . However, such a method may
be inefficient. This is because this naive approach may pick
a node that has many neighbors which may degrade the
performance of the clique-constraint pruning and the negative-
edge constraint pruning (lines 16-18). To enhance the pruning
performance, we propose a heuristic node selection strategy.
Specifically, we choose the node 𝑢 from 𝑅 ∖ 𝐼 with the
minimum positive degree, i.e., 𝑢 = argmin𝑣∈𝑅∖𝐼{𝑑+𝑣 (𝐺𝑅)}.
The rationale behind our approach is as follows. The node 𝑢
with minimum positive degree results in many other nodes in
𝑅∖𝐼 that are either negative neighbors or non-neighbor nodes
of 𝑢. The negative neighbors are likely to be pruned by the
negative-edge constraint pruning rule, and the non-neighbor
nodes can be pruned by the clique-constraint pruning rule. In
our experiments, we show that this heuristic node selection
strategy significantly outperforms a random node selection
strategy.

Finding the top-𝑟 results. The MSCE algorithm can be
easily extended to find the top-𝑟 maximal (𝛼, 𝑘)-cliques.
Specifically, in line 12, when obtaining 𝑟 maximal (𝛼, 𝑘)-
cliques, the algorithm maintains the minimum size over all
𝑟 results. Suppose that the minimum size is 𝜌. Then, the
algorithm makes use of 𝜌 to further reduce the search space.
After computing the ⌈𝛼𝑘⌉-core 𝑅 (line 9), the algorithm can

251

TABLE I
DATASETS

Dataset 𝑛 = ∣𝑉 ∣ 𝑚 = ∣𝐸∣ ∣𝐸+∣ ∣𝐸−∣ 𝑘max

Slashdot 82,144 500,481 382,882 117,599 54
Wiki 138,592 715,883 631,546 84,337 55
DBLP 1,314,050 5,362,414 1,245,522 4,116,892 118

Youtube 1,157,827 2,987,624 2,090,338 897,286 51
Pokec 1,632,803 30,622,564 21,355,492 9,267,072 47

terminate early if ∣𝑅∣ < 𝜌. This is because in this case, the
results obtained in the current search space cannot contain
a maximal (𝛼, 𝑘)-clique that is larger than the top-𝑟 results.
The experimental results show that our algorithm is much
faster at finding the top-𝑟 maximal (𝛼, 𝑘)-cliques compared
to enumerating all the results.

V. EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the efficiency and effectiveness of our algorithms. We
implement two algorithms MCBasic and MCNew to compute
maximal constrained ⌈𝛼𝑘⌉-cores. We also implement two
algorithms MSCE-R and MSCE-G to compute all (and top-
𝑟) maximal (𝛼, 𝑘)-cliques. MSCE-R is essentially Algorith-
m 4 with a random node-selection strategy, while MSCE-G
is Algorithm 4 with a greedy node-selection strategy (see
Section IV for details). Since no existing algorithm can be
applied to enumerate signed cliques, we use MSCE-R as
the baseline for efficiency testing. Section V-B compares the
effectiveness of our signed clique model with three other
community models. All algorithms are implemented in C++.
We conduct all experiments on a PC with a 2.4GHz Xeon
CPU and 16GB memory running Red Hat Linux 6.4.
Datasets. We make use of five real-world datasets in our
experiments. Table I provides the statistics, where the last
column denotes the maximum 𝑘-core number of the network.
Slashdot and Wiki are signed networks. DBLP is a co-
authorship network, where each node denotes an author and
an edge (𝑢, 𝑣) means that 𝑢 and 𝑣 co-authored at least one
paper. To create a signed network for DBLP, we assign “+”
to an edge (𝑢, 𝑣) if the number of papers co-authored by 𝑢
and 𝑣 is no less than the threshold 𝜏 , otherwise we assign “-”
to (𝑢, 𝑣). In all experiments, we set 𝜏 as the average number
of papers co-authored by two researchers (𝜏 = 1.427 in our
dataset). Both Youtube and Pokec are social networks. We
generate a signed network for each by randomly picking 30%
of the edges as the negative edges and the remaining edges
as positive edges. Slashdot, DBLP, Youtube, and Pokec are
downloaded from the Stanford network dataset collection (ht
tp://snap.stanford.edu). Wiki is downloaded from the Koblenz
network collection (http://konect.uni-koblenz.de/).
Parameters. There are two parameters in our algorithms: 𝛼
and 𝑘. The parameter 𝛼 is selected from the interval [2, 7] with
a default value of 𝛼 = 4; 𝑘 is chosen from the interval [1, 6]
with a default value of 𝑘 = 3. Unless otherwise specified, the
value of the other parameter is set to its default value when
varying a parameter.

A. Efficiency testing
Exp-1: Comparison between MCBasic and MCNew. Fig. 3
shows the efficiency of MCBasic and MCNew on Slashdot and
DBLP datasets. Similar results can also be observed for the
other datasets. Both MCBasic and MCNew are very efficient.
MCNew consistently outperforms MCBasic with all parameter

 0

 5

 10

 15

 20

 2 3 4 5 6 7

Ti
m

e
(s

ec
)

α

MCNew
MCBasic

(a) Slashdot (vary 𝛼)

 0

 5

 10

 15

 20

 1 2 3 4 5 6

Ti
m

e
(s

ec
)

k

MCNew
MCBasic

(b) Slashdot (vary 𝑘)

 0

 0.5

 1

 1.5

 2

 2 3 4 5 6 7

Ti
m

e
(s

ec
)

α

MCNew
MCBasic

(c) DBLP (vary 𝛼)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

Ti
m

e
(s

ec
)

k

MCNew
MCBasic

(d) DBLP (vary 𝑘)

Fig. 3. Efficiency of MCBasic and MCNew

 0

 200

 400

 600

 800

 1000

 1200

 2 3 4 5 6 7

N
od

es

α

MCNew

(a) Slashdot (vary 𝛼)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 1 2 3 4 5 6

N
od

es

k

MCNew

(b) Slashdot (vary 𝑘)

1K

10K
15K
20K
25K
30K
35K

 2 3 4 5 6 7

N
od

es

α

MCNew

(c) DBLP (vary 𝛼)

1K

40K

80K

120K

 1 2 3 4 5 6

N
od

es

k

MCNew

(d) DBLP (vary 𝑘)

Fig. 4. The total number of nodes of maximal constrained ⌈𝛼𝑘⌉-cores

settings. For example, on Slashdot, MCNew is four times
faster than MCBasic when 𝛼 = 2 and 𝑘 = 3. In general,
the running time of both MCBasic and MCNew decrease with
an increasing 𝛼 and 𝑘. This is because the neighbor-core
constraint of the maximal constrained ⌈𝛼𝑘⌉-core (Definition 3)
grows stronger when 𝛼 and 𝑘 are large, which gives rise to
strong pruning performance in both MCBasic and MCNew. It
is worth noting that our algorithms are fairly fast in DBLP
because the positive-edge network in DBLP is very sparse.
These results confirm our theoretical analysis in Section III.

Exp-2: The size of maximal constrained ⌈𝛼𝑘⌉-cores. In
this experiment, we study the total number of nodes of the
maximal constrained ⌈𝛼𝑘⌉-cores. To this end, we use MCNew
to compute the maximal constrained ⌈𝛼𝑘⌉-cores, as it is
more efficient than MCBasic. Fig. 4 shows the results for
the Slashdot and DBLP datasets. Similar results can be also
observed for the other datasets. As desired, the number of
nodes of the maximal constrained ⌈𝛼𝑘⌉-cores decreases with
an increasing 𝛼 and 𝑘. Moreover, we observe that the total
number of nodes of the maximal constrained ⌈𝛼𝑘⌉-cores is
much smaller than the number of nodes of the graph. For
instance, in Fig. 4(a), when 𝛼 = 4 and 𝑘 = 3, the total
number of nodes of maximal constrained ⌈𝛼𝑘⌉-cores is only
422, but the entire graph size is 82,144. These results indicate
that the proposed graph reduction technique can drastically
prune unpromising nodes to identify the signed cliques.

Exp-3: Results of enumerating all signed cliques. In this
experiment, we study the efficiency of MSCE-R and MSCE-
G for enumerating all signed cliques. We limit the maximal

252

1

10

100

1K

10K

 2 3 4 5 6 7

T
im

e
(s

ec
)

α

MSCE-G
MSCE-R

(a) Slashdot (vary 𝛼)

10

100

1K

10K

 2 3 4 5 6 7

T
im

e
(s

ec
)

α

MSCE-G
MSCE-R

(b) Wiki (vary 𝛼)

1

10

100

1K

10K

 2 3 4 5 6 7

T
im

e
(s

ec
)

α

MSCE-G
MSCE-R

(c) DBLP (vary 𝛼)

1

10

100

1K

 2 3 4 5 6 7

T
im

e
(s

ec
)

α

MSCE-G
MSCE-R

(d) Youtube (vary 𝛼)

10

100

1K

10K

 2 3 4 5 6 7

T
im

e
(s

ec
)

α

MSCE-G
MSCE-R

(e) Pokec (vary 𝛼)

1

10

100

1K

10K

 1 2 3 4 5 6

T
im

e
(s

ec
)

k

MSCE-G
MSCE-R

(f) Slashdot (vary 𝑘)

10

100

1K

10K

 1 2 3 4 5 6

T
im

e
(s

ec
)

k

MSCE-G
MSCE-R

(g) Wiki (vary 𝑘)

10

100

1K

10K

 1 2 3 4 5 6

T
im

e
(s

ec
)

k

MSCE-G
MSCE-R

(h) DBLP (vary 𝑘)

1

10

100

1K

 1 2 3 4 5 6

T
im

e
(s

ec
)

k

MSCE-G
MSCE-R

(i) Youtube (vary 𝑘)

10

100

1K

10K

 1 2 3 4 5 6

T
im

e
(s

ec
)

k

MSCE-G
MSCE-R

(j) Pokec (vary 𝑘)

Fig. 5. Efficiency of our algorithms for enumerating all signed cliques

running time to 3600 seconds for both MSCE-R and MSCE-
G, because MSCE-R may be intractable with some parameter
settings due to the NP-hardness of our problem. Fig. 5 reports
the efficiency of these algorithms with varying values for 𝛼
and 𝑘. From Fig. 5, we can see that MSCE-G is at least
one order of magnitude faster than MSCE-R on the Slashdot,
Wiki, and DBLP datasets with most parameter settings. For
example, when 𝛼 = 4 and 𝑘 = 3, MSCE-G takes 54 seconds
to enumerate all signed cliques on Slashdot, while MSCE-
R does not terminate within 3600 seconds. On Youtube and
Pokec, MSCE-G consistently outperforms MSCE-R. We can
also clearly observe that MSCE-G is tractable on all datasets
with almost all parameter settings. MSCE-R, however, is only
tractable on the Youtube dataset. These results confirm that the
greedy node-selection strategy in Algorithm 4 is significantly
better than the random node-selection strategy.

Generally, the running time of our algorithms drops with
an increasing 𝛼 and 𝑘. This is because the positive-edge
constraint of maximal (𝛼, 𝑘)-clique is strong for large values
of 𝛼 and 𝑘, thus enhancing the pruning power of our
algorithms. Interestingly, in some cases, the running time of
MSCE-G does not necessarily decrease when 𝑘 increases. For
example, in Fig. 5(h), when 𝑘 ≥ 2, MSCE-G’s running time
increases as 𝑘 increases on DBLP. This could be because
MSCE-G’s pruning power may be dominated by negative-edge
pruning when 𝑘 ≥ 2. Since (i) the negative-edge constraint of
maximal (𝛼, 𝑘)-clique is relatively weak for a large 𝑘 and
(ii) DBLP has a relatively large 𝑘max value (see Table I),
the number of signed cliques can be very large. Therefore,
in this case, the pruning power of MSCE-G decreases when 𝑘
increases. However, on the other datasets, the 𝑘max values are
relatively small and the pruning power of our algorithm may
be dominated by the positive-edge constraint, thus the running
time of MSCE-G decreases as 𝑘 increases.

Exp-4: The number of maximal (𝛼, 𝑘)-cliques. Fig. 6 shows
the number of maximal (𝛼, 𝑘)-cliques on the Slashdot and
DBLP datasets. Similar results can also be derived on the
other datasets. On Slashdot, the number of signed cliques
decreases as both 𝛼 and 𝑘 increases, because the positive-
edge constraint (see Definition 1) is strong if 𝑘 is large. On
DBLP, however, the number of signed cliques increases with
an increasing 𝑘. The reason could be that on DBLP, the
negative-edge constraint of the maximal (𝛼, 𝑘)-clique may
dominate its positive-edge constraint. With a large 𝑘, the

10K

100K

1M

 2 3 4 5 6 7

Si
gn

ed
 c

liq
ue

s

α

MSCE-G

(a) Slashdot (vary 𝛼)

100

1K

10K

100K

1M

 1 2 3 4 5 6

Si
gn

ed
 c

liq
ue

s

k

MSCE-G

(b) Slashdot (vary 𝑘)

100K

1M

10M

 2 3 4 5 6 7

Si
gn

ed
 c

liq
ue

s

α

MSCE-G

(c) DBLP (vary 𝛼)

10K

100K

1M

10M

 1 2 3 4 5 6

Si
gn

ed
 c

liq
ue

s

k

MSCE-G

(d) DBLP (vary 𝑘)

Fig. 6. The number of maximal (𝛼, 𝑘)-cliques

negative-edge constraint is relatively weak. Thus, the number
of signed cliques increases with increasing 𝑘. These results
are consistent with the results observed in Exp-3.

Exp-5: Results for finding top-𝑟 signed cliques. Here we test
the efficiency of our algorithms for finding the top-𝑟 signed
cliques. In this experiment, 𝑟 is selected from an interval
[1, 50]. When varying 𝛼 and 𝑘, 𝑟 is set to a default value 30.
Fig. 7 reports the results on Slashdot and DBLP; again similar
results can be observed for the other datasets. Note that since
MSCE-G is significantly faster than MSCE-R, we only show
the results for MSCE-G in Fig. 7. The results in Figs. 7(a-
d) are consistent with the results of enumerating all signed
cliques. MSCE-G takes substantially less time to compute top-
30 signed cliques than to enumerate all the signed cliques. For
example, when 𝛼 = 4 and 𝑘 = 3, MSCE-G takes 13 seconds
on Slashdot and 17 seconds on DBLP to find the top-30
results, respectively. However, it takes 54 seconds to enumerate
all the signed cliques on Slashdot and 80 seconds on DBLP.
From Figs. 7(e-f), the time cost of MSCE-G increases with an
increasing 𝑟 as expected. These results confirm our previous
analysis in Section IV.

Exp-6: Scalability testing. We make use of the largest dataset
Pokec to test the scalability of MSCE-G. Specifically, we
generate four subgraphs by randomly sampling 20-80% of
the edges from Pokec and test MSCE-G’s time cost on these
subgraphs. Fig. 8 depicts the scalability results to enumerate
all the signed cliques and to find the top-𝑟 signed cliques with
the default parameter setting. The time cost increases smoothly

253

 5

 10

 15

 20

 25

 2 3 4 5 6 7

Ti
m

e
(s

ec
)

α

MSCE-G

(a) Slashdot (vary 𝛼)

 0
 20
 40
 60
 80

 100
 120

 2 3 4 5 6 7

Ti
m

e
(s

ec
)

α

MSCE-G

(b) DBLP (vary 𝛼)

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6

Ti
m

e
(s

ec
)

k

MSCE-G

(c) Slashdot (vary 𝑘)

1

10

100

1K

10K

 1 2 3 4 5 6
Ti

m
e

(s
ec

)

k

MSCE-G

(d) DBLP (vary 𝑘)

 6
 8

 10
 12
 14
 16
 18

1 10 20 30 40 50

Ti
m

e
(s

ec
)

r

MSCE-G

(e) Slashdot (vary 𝑟)

 12

 14

 16

 18

 20

 22

1 10 20 30 40 50

Ti
m

e
(s

ec
)

r

MSCE-G

(f) DBLP (vary 𝑟)

Fig. 7. Efficiency of MSCE-G for finding the top-𝑟 signed cliques

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

MSCE-G (All)
MSCE-G (Top-r)

(a) Vary ∣𝑉 ∣

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

MSCE-G (All)
MSCE-G (Top-r)

(b) Vary ∣𝐸∣
Fig. 8. Scalability testing (Pokec, 𝛼 = 4, 𝑘 = 3, 𝑟 = 30)

with a varying ∣𝑉 ∣ or ∣𝐸∣ in both tests. We also find that
MSCE-G shows near-linear scalability in identifying the top-𝑟
results. These results suggest that MSCE-G is scalable when
handling large real-world signed networks.

Exp-7: Memory overhead. Fig. 9 reports the memory over-
head of MSCE-G for all datasets. The results demonstrate that
the memory usage of MSCE-G is slightly higher than the graph
size but clearly lower than twice the size of the graph. These
results confirm the linear space complexity of MSCE-G.

B. Effectiveness testing

To measure the quality of a cohesive subgraph in signed
networks, we propose an intuitive metric called signed con-
ductance, based on the classic conductance in graph theory
[13]. Let 𝑆 be a set of nodes. The signed conductance of 𝑆
is defined below.

𝜙(𝑆) ≜
∑

𝑢∈𝑆,𝑣∈𝑉 ∖𝑆 𝐴+
𝑢𝑣

min{∑𝑢∈𝑆 𝑑+𝑢 ,
∑

𝑢∈𝑉 ∖𝑆 𝑑+𝑢 }
−

∑
𝑢∈𝑆,𝑣∈𝑉 ∖𝑆 𝐴−𝑢𝑣

min{∑𝑢∈𝑆 𝑑−𝑢 ,
∑

𝑢∈𝑉 ∖𝑆 𝑑−𝑢 }
.

(1)
The first (second) part in Eq. (1) is the classic conductance

of 𝑆 [13] defined on the signed network without considering
negative (positive) edges. For convenience, we refer to the first
(second) part as the positive-edge conductance (negative-edge
conductance). Intuitively, an interesting cohesive subgraph
(e.g., a trust community) in a signed network should have
many positive intra-edges and few negative intra-edges. It
should also have many negative inter-edges and few positive
inter-edges. In other words, an interesting cohesive subgraph

 0

 50

 100

 150

 200

Slashdot Wiki DBLP Youtube Pokec

M
em

or
y

(M
B)

Graph size
MSCE-G

Fig. 9. Memory overhead of MSCE-G

in the signed network should have a low positive-edge con-
ductance and a high negative-edge conductance. Clearly, the
definition of signed conductance in Eq. (1) captures this
intuition. Note that the signed conductance 𝜙(𝑆) falls into
a range [−1, 1]. An interesting cohesive subgraph in a signed
network should has a small signed conductance.

We compare our signed clique model, denoted by
SignedClique, with three intuitive baselines: Core [9],
SignedCore [5], and TClique [19]. Core is a method
that computes the ⌈𝛼𝑘⌉-core in the signed network after
removing all negative edges. SignedCore is an existing
signed community model proposed in [5], which has been
successfully applied to analyze trust dynamics in signed
networks. SignedCore, as defined in [5], has two parameters
𝛽 and 𝛾. It requires that every node in the SignedCore
has at least 𝛽 positive neighbors and also has at least 𝛾
negative neighbors. Thus, to match the parameters between
SignedCore and SignedClique, we set 𝛽 = ⌈𝛼𝑘⌉ and 𝛾 = 𝑘
in our experiments. TClique is the state-of-the-art signed
community model proposed in [19] which aims to identify
maximal cliques in the signed network without considering
negative edges. In [19], the TClique model is considered to
be a trusted clique, and its size is limited to 𝑘. For a fair
comparison, we drop this size constraint in TClique with the
aim of finding all maximal trusted cliques.

Exp-8: Signed conductance of various models. We compute
the average signed conductance of the top-𝑟 communities
returned by each method. Table II reports the results obtained
with the default parameter settings (i.e., 𝛼 = 4, 𝑘 = 3,
and 𝑟 = 30). Similar results can also be obtained with
other parameter settings. From Table II, we can see that
SignedClique consistently outperforms all the baselines. The
results for SignedCore and TClique are comparable, with
both performing slightly better than Core. The reasons are as
follows. Compared to other models, SignedClique not only
requires every node that has ⌈𝛼𝑘⌉ positive intra-neighbors,
but it also limits the number of negative intra-neighbors to
be smaller than 𝑘. Therefore, there may be many positive
edges in the community, with a few positive edges that can
span different communities, resulting in a small positive-
edge conductance. On the other hand, there are not too
many negative edges in our community (due to the negative-
edge constraint). Hence, there may be many negative edges
spanning different communities, which gives rise to a large
negative-edge conductance. As a consequence, the signed
conductance of our model should be small. These results
indicate that the proposed approach is indeed effective for
modeling cohesive subgraphs in signed networks.

Exp-9: Case study on DBLP. We conduct a case study
using the DBLP dataset to compare the effectiveness of

254

TABLE II
SIGNED CONDUCTANCE OF VARIOUS MODELS

Datasets Core SignedCore TClique SignedClique

Slashdot -0.0252 -0.0764 -0.0838 -0.0863
Wiki 0.0835 0.0252 -0.0124 -0.0218
DBLP -0.4485 -0.4946 -0.4856 -0.5154
Youtube -0.0201 -0.0158 -0.0233 -0.0237
Pokec -0.0235 -0.0149 -0.1345 -0.2262

Jeffrey_Xu_Yu

Jiawei_Han

Philip_S._Yu

Ke_Wang

Ada_Wai-Chee_Fu

(a) TClique

Jeffrey_Xu_Yu

Jiawei_Han

Philip_S._Yu

Ke_Wang

Haixun_Wang

(b) TClique

Beng_Chin_Ooi

H._V._Jagadish

Rakesh_Agrawal

Joseph_M._Hellerstein

Hector_Garcia-Molina

(c) TClique

Jeffrey_Xu_Yu

Jiawei_Han

Philip_S._Yu
Ke_Wang

Ada_Wai-Chee_Fu

Haixun_Wang
Jian_Pei

(d) SignedClique

Jiawei_Han

Philip_S._Yu

Charu_C._Aggarwal

Jianyong_Wang

Haixun_Wang

Jian_Pei

(e) SignedClique

Beng_Chin_Ooi

H._V._Jagadish

Rakesh_Agrawal

Joseph_M._Hellerstein

Hector_Garcia-Molina

Philip_A._Bernstein

Michael_J._Franklin

(f) SignedClique

Fig. 10. Comparison of various models (𝛼 = 2 and 𝑘 = 2, black edges are
positive edges and red edges denote negative edges).

various models. Recall that, in DBLP, a negative (positive)
edge implies that two researchers have co-authored at least
𝜏 papers, where 𝜏 = 1.427 is the average number of papers
co-authored by the researchers. A negative (positive) edge in
DBLP can be considered to be a weak (strong) connection
between two authors. Fig. 10 shows the communities of
Professors Jiawei Han and H. V. Jagadish derived by TClique
and SignedClique with the parameters 𝛼 = 2 and 𝑘 = 2.
Note that we test both Core and SignedCore using many
parameter settings, but the community size (including Jiawei
Han or H. V. Jagadish) is either very large (more than 10,000
nodes), or no community is found, so those results have not
been included. The reason could be that the 𝑘-core constraint
in both Core and SignedCore is relatively loose; therefore,
these models fail to discover compact communities. As shown
in Fig. 10, our model is able to find strongly-cooperative
and compact communities with a tolerance to a few negative
edges, whereas the TClique model may miss some important
members of the community. For example, in Figs. 10(a-b),
TClique misses Professors Pei Jian and Charu C. Aggarwal.
However, with a few negative edges, the communities in
Fig. 10(d-e) obtained by SignedClique consist of Professors
Pei Jian and Charu C. Aggarwal. Similar results can also be
observed in Figs. 10(c) and (f). These results indicate that
our model is more effective than the baselines in identifying
intuitive and compact communities in signed networks.

Exp-10: Protein complex discovery. In signed protein-protein
interaction (PPI) networks, a protein complex typically denotes
a densely-connected signed subgraph [3]. In this experiment,
we compare the effectiveness of SignedClique with those of
the other baseline models for protein complex discovery. We
collect a real-world signed PPI network, called FlySign, from
[20]. The FlySign network consists of 3,352 nodes and 6,094
signed edges (4112 positive edges and 1982 negative edges).
The ground-truth complexes in FlySign can be obtained by
using the complex enrichment analysis tool [21], [3]. Based
on the ground-truth complexes, we are able to compute the

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 2 3 4 5 6

Pr
ec

is
io

n

α

Core
SignedCore

TClique
SignedClique

(a) Vary 𝛼 (𝑘 = 3)

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 1 2 3 4 5

Pr
ec

is
io

n

k

Core
SignedCore

TClique
SignedClique

(b) Vary 𝑘 (𝛼 = 4)

Fig. 11. Precision of different community models on the FlySign datasets.

precision for different models. Specifically, for each complex
obtained by various models, the precision is computed by
TP/(TP+FP), where TP denotes the number of true-positive
nodes and FP denotes the number of false-positive nodes. We
compute the average precision of the top-30 complexes identi-
fied by different models. The results are shown in Fig. 11. We
can see that SignedClique significantly outperforms the other
baselines under all parameter settings. In general, the clique-
based models (SignedClique and TClique) perform much
better than the core-based models (SignedCore and Core).
The reason could be that the results of the clique-based
models are much more compact than those of the core-based
models. For example, when 𝛼 = 5 and 𝑘 = 3, the precision
of SignedClique and TClique is 0.71 and 0.48 respectively,
while the precision of SignedCore and Core is 0 and 0.34
respectively. Note that SignedCore may return an empty
subgraph when 𝑘 is large, because the SignedCore model
imposes a strong negative-edge constraint which requires the
number of negative edges no less than 𝑘 [5]. As a result, the
precision of SignedCore can be 0 when 𝑘 is large. These results
further confirm the effectiveness of SignedClique.

VI. RELATED WORK

Signed network analysis. After a seminal work [6], signed
network analysis has attracted much attention in recent years.
Notable applications include link prediction [22], [23], [24],
recommendation systems [25], [26], clustering and community
detection [7], [27], [3], [28], and antagonistic community
analysis [29], [30]. An excellent survey on signed network
analysis can be found in [31]. Our work is closely related
to clustering and community detection. The aim in solving
this problem is to partition the signed network into several
densely-connected components [7], [27]. Most existing so-
lutions involve a complicated optimization procedure (e.g.,
[3], [28]), and therefore they cannot handle million-sized
signed networks. Moreover, they also lack a clear and cohesive
subgraph model to characterize the resulting communities.
Unlike these studies, our work provides a cohesive subgraph
model that could prove useful for community discovery and
community search related applications in signed networks [1].
Further, the proposed algorithm is scalable to million-sized
signed networks.

Community modeling. Communities in a graph are often
represented by densely-connected subgraphs. Many commu-
nity models exist in the literature. Notable examples include
the maximal clique model [14], [8], k-core [9], [32], k-truss
[10], [18], [2], maximal 𝑘-edge connected subgraph [33],
[34], quasi-clique [35], locally densest subgraph [36], and so
on. More recently, many different community models have
been proposed for attributed graphs. For example, Fang et

255

al. [37] proposed an attributed community model based on
𝑘-core. Huang and Lakshmanan [38] presented an attributed
truss model to find the community with highest attribute
relevance score w.r.t. query nodes. Beyond attributed com-
munities, Li et al. [39] introduced an influential community
model to capture the influence of a community. All the
above-mentioned community models are tailored to unsigned
networks. To define a cohesive subgraph model in signed
networks, Giatsidis et. al. [5] introduced a signed core model,
which was originally proposed to study the trust dynamic in
signed networks. However, this model is not able to intuitively
reveal a community in a signed network because it requires
the number of negative edges to be larger than a given
threshold, which may result in the nodes in the community
having many negative neighbors. Hao et. al. [19] proposed a
trusted clique model, which completely ignores the negative
edges in the signed network. Unlike previous models, the
proposed signed clique model limits the number of negative
neighbors for each node in the community. Thus, it is better
to reflect a community in signed networks, as confirmed in
our experiments.

VII. CONCLUSION

In this paper, we introduce a novel model, called maximal
(𝛼, 𝑘)-clique, to characterize a cohesive subgraph in signed
networks. To enumerate all maximal (𝛼, 𝑘)-cliques, we first
propose an efficient signed network reduction algorithm to
substantially prune the signed network. The time complexity
of our technique is 𝑂(𝛿𝑚), where 𝛿 denotes the arboricity
of the signed network. Then, we develop a new branch and
bound enumeration algorithm with several powerful pruning
techniques to efficiently enumerate all maximal (𝛼, 𝑘)-cliques.
Comprehensive experiments on five large real-life networks
demonstrate the efficiency, scalability, and effectiveness of our
algorithms.

Acknowledgement. Rong-Hua Li was partially supported by the
NSFC Grants 61772346, Guangdong Natural Science Foundation
(2017B030314073), and Guangdong Provincial General University
National Development Program (2014GKXM054). Lu Qin was sup-
ported by ARC DP 160101513. Guoren Wang was supported by the
NSFC Grants 61732003. Xiaokui Xiao was partially supported by
MOE, Singapore under grant MOE2015-T2-2-069, and by NUS, Sin-
gapore under an SUG. Jeffrey Xu Yu was supported by the Research
Grants Council of the Hong Kong SAR, China No. 14221716. Shaojie
Qiao was supported by the NSFC Grants 61772091. Guoren Wang
is the corresponding author of this paper.

REFERENCES

[1] M. Sozio and A. Gionis, “The community-search problem and how to
plan a successful cocktail party,” in KDD, 2010.

[2] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” SIGMOD, 2014.

[3] L. Ou-Yang, D. Dai, and X. Zhang, “Detecting protein complexes from
signed protein-protein interaction networks,” IEEE/ACM Trans. Comput.
Biology Bioinform., vol. 12, no. 6, pp. 1333–1344, 2015.

[4] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense
subgraphs in massive graphs,” in VLDB, 2005.

[5] C. Giatsidis, B. Cautis, S. Maniu, D. M. Thilikos, and M. Vazirgiannis,
“Quantifying trust dynamics in signed graphs, the s-cores approach,” in
SDM, 2014.

[6] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, “Signed networks
in social media,” in CHI, 2010.

[7] B. Yang, W. K. Cheung, and J. Liu, “Community mining from signed
social networks,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 10, pp.
1333–1348, 2007.

[8] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maximal
cliques in massive networks,” ACM Trans. Database Syst., vol. 36, no. 4,
pp. 21:1–21:34, 2011.

[9] S. B. Seidman, “Network structure and minimum degree,” Social
Networks, vol. 5, no. 3, pp. 269–287, 1983.

[10] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
Technical report, National Security Agency, 2005.

[11] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.

[12] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter, “Arboricity, h-index,
and dynamic algorithms,” Theor. Comput. Sci., vol. 426, pp. 75–90,
2012.

[13] S. Galhotra, A. Bagchi, S. Bedathur, M. Ramanath, and V. Jain,
“Tracking the conductance of rapidly evolving topic-subgraphs,”
PVLDB, vol. 8, no. 13, pp. 2170–2181, 2015.

[14] C. Bron and J. Kerbosch, “Finding all cliques of an undirected graph
(algorithm 457),” Commun. ACM, vol. 16, no. 9, pp. 575–576, 1973.

[15] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theor. Comput. Sci., vol. 363, no. 1, pp. 28–42, 2006.

[16] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques
in large sparse real-world graphs,” ACM Journal of Experimental
Algorithmics, vol. 18, 2013.

[17] C. S. J. A. Nash-Williams, “Decomposition of finite graphs into forests,”
Journal of the London Mathematical Society, vol. 39, no. 1, pp. 12–12,
1964.

[18] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
PVLDB, vol. 5, no. 9, pp. 812–823, 2012.

[19] F. Hao, S. S. Yau, G. Min, and L. T. Yang, “Detecting k-balanced trusted
cliques in signed social networks,” IEEE Internet Computing, vol. 18,
no. 2, pp. 24–31, 2014.

[20] A. Vinayagam, J. Zirin, C. Roesel, Y. Hu, B. Yilmazel, A. A.
Samsonova, R. A. Neumuller, S. E. Mohr, and N. Perrimon, “Integrating
protein-protein interaction networks with phenotypes reveals signs of
interactions,” Nature Methods, vol. 11, pp. 94–99, 2014.

[21] A. Vinayagam, Y. Hu, M. Kulkarni, C. Roesel, R. Sopko, S. E. Mohr,
and N. Perrimon, “Protein complexcbased analysis framework for high-
throughput data sets,” Science Signaling, vol. 6, no. 264, 2013.

[22] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, “Predicting
positive and negative links in online social networks,” in WWW, 2010.

[23] J. Ye, H. Cheng, Z. Zhu, and M. Chen, “Predicting positive and negative
links in signed social networks by transfer learning,” in WWW, 2013.

[24] D. Song and D. A. Meyer, “Recommending positive links in signed
social networks by optimizing a generalized AUC,” in AAAI, 2015.

[25] D. Song, D. A. Meyer, and D. Tao, “Efficient latent link recommendation
in signed networks,” in KDD, 2015.

[26] J. Tang, C. C. Aggarwal, and H. Liu, “Recommendations in signed social
networks,” in WWW, 2016.

[27] P. Doreian and A. Mrvar, “Partitioning signed social networks,” Social
Networks, vol. 31, no. 1, pp. 1–11, 2009.

[28] J. Cadena, A. K. S. Vullikanti, and C. C. Aggarwal, “On dense subgraphs
in signed network streams,” in ICDM, 2016.

[29] M. Gao, E. Lim, D. Lo, and P. K. Prasetyo, “On detecting maximal quasi
antagonistic communities in signed graphs,” Data Min. Knowl. Discov.,
vol. 30, no. 1, pp. 99–146, 2016.

[30] L. Chu, Z. Wang, J. Pei, J. Wang, Z. Zhao, and E. Chen, “Finding gangs
in war from signed networks,” in KDD, 2016.

[31] J. Tang, Y. Chang, C. C. Aggarwal, and H. Liu, “A survey of signed
network mining in social media,” ACM Comput. Surv., vol. 49, no. 3,
pp. 42:1–42:37, 2016.

[32] R. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10, pp.
2453–2465, 2014.

[33] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li, “Finding
maximal k-edge-connected subgraphs from a large graph,” in EDBT,
2012.

[34] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang, “Efficiently
computing k-edge connected components via graph decomposition,” in
SIGMOD, 2013.

[35] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of
overlapping communities,” in SIGMOD, 2013.

[36] L. Qin, R. Li, L. Chang, and C. Zhang, “Locally densest subgraph
discovery,” in KDD, 2015.

[37] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for
large attributed graphs,” PVLDB, vol. 9, no. 12, pp. 1233–1244, 2016.

[38] X. Huang and L. V. S. Lakshmanan, “Attribute-driven community
search,” PVLDB, vol. 10, no. 9, pp. 949–960, 2017.

[39] R. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search in
large networks,” PVLDB, vol. 8, no. 5, pp. 509–520, 2015.

256

